第四章 金屬植入材料Implants of Metal

        金屬已被用於各種形式的植入物,最早發展作為骨板和骨螺絲的金屬植入物為Sherman釩鋼“Sherman vanadium steel”。大部份用來製造植入物的金屬如:FeCrCoNiTiTaMoW,在微量時可以被身體忍受,且有時也是紅血球官能(Fe)或合成維生素B12 (Co)的基本要素,但在量大時則無法忍受。植入金屬的生物相容性是不能忽視的,因為它們在人體內有害的環境中會被腐蝕,腐蝕的後果會使材料本身被侵蝕,並因此使植入物變弱。另外,更重要的是腐蝕產物釋放到周圍的組織造成不好的效果。

4.1.不鏽鋼

4.2. Co-基合金

4.3. TiTi-基合金

4.4.牙科金屬

4.5.其他的金屬

4.6.金屬植入物遭遇的問題

 

參考文獻 

[1]      Annual Book of ASTM Standards, Part 46, American Society for Testing and Materials, Philadelphia, 1980.

[2]      J. B. Park and R. S. Lakes, “Biomaterials: an introduction,” 2nd ed., Plenum Press, New York, 1992.

[3]      C. J. E. Smith and A. N. Hughes, “The corrosion fatigue behavior of a titanium-6 w/o aluminum-4 w/o vanadium alloy,” Eng. Med., 7, 158-171, 1966.

[4]      T. Hanawa, “In vivo metallic biomaterials and surface modification,” Materials Science and Engineering, A267, 260-266, 1999.

[5]      K. Merritt, S. A. Brown, J. Biomed. Mater. Res., 22, 111, 1998.

[6]      R. L. Williams, S. A. Brown, K. Merritt, Biomaterials, 9, 181, 1988.

[7]      劉華昌, “人工髖關節鬆脫之整體研究:不同物質的顆粒對骨細胞、肌肉細胞與纖維細胞的影響”, 編號NSC 85-2213-E-002-054, 中華民國八十五年國科會醫學工程研究成果發表會論文集, p.21 (1996).

[8]      Maloney W. J., “Endosteal Erosion In Association With Stable Uncemented Femoral Components”, JBJS, Vol. 72 (1990), p.1025-1034.

[9]      施俊雄, “人工髖關節鬆脫與骨質溶解誘因及相關研究—人工髖關節內聚乙烯磨損之測量”, 編號NSC 85-2213-E-182-012.

[10]  H. Tomas, G. S. Caevalho, M. H. Fernandes, A. P. Freire, and L. M. Abrantes, “Effects of Co-Cr corrosion products and corresponding separate metal ions on human osteoblast-like cell cultures,” Journal of Materials Science: Materials in Medicine, 7, 291-296, 1996.

[11]  H. S. Dobbs and M. J. Minski, “Metal ion release after total hip replacement,” Biomaterials, 1, 193-198, 1980.

[12]  P. R. Bouchard, B. Jonathan, B. A. Albrecht, R. E. Kaderly, J. O. Galante, and B. U. Pauli, “Carcinogenicity of CoCrMo(F-75) implants in the rat,” J. Biomed. Mater. Res., 32, 37-44, 1996.

[13]  H. C. Hsu and S. Y. Yen, “Evaluation of metal ion release and corrosion resistance of ZrO2 thin coating on the dental Co-Cr-Mo alloys,” Dental Materials, 14, 339-346, 1998.

[14]  S. K. Yen, M. J. Guo, and H. Z. Zan, “Characterization of electrolytic ZrO2 coating on Co-Cr-Mo implant alloys of hip prosthesis,” Biomaterials, in press.

[15]  S. K. Yen and S. W. Hsu, “Electrolytic Al2O3 coating on Co-Cr-Mo implant alloys of hip prosthesis,” submitted to J. Biomed. Mater. Res..

[16]  R. W. Schutz and D. E. Thomas, “Corrosion of titanium and titanium alloys,” ASM Metal Handbook, 9th ed., vol. 13, p. 678, 1988.

[17]  R. W. Schutz and D. E. Thomas, “Corrosion of titanium and titanium alloys,” ASM Metal Handbook, 9th ed., vol. 13, p. 678, 1988.

[18]  L. Reclaru and J. -M. Meyer, “Effects of fluorides on titanium and other dental alloys in dentistry,” Biomaterials, 19, 85-92, 1998.

[19]  J. M. Haguenoer and D. Furon, “Toxicologie et Hygiene Industrielle, Les Derives Mineraux,” vols I and II, Technique et Documentation, Paris.

[20]  E. Merian, “Metalle in der Umwelt: Verteilung, Analytik und biologische Relevanz,” Verlag Chemie, Weinheim.

[21]  I. G. Macara, “Vanadium, an element in search of a role,” Trends Biochem. Sci., 5, 92-95, 1980.

[22]  L. C. Clarke, H. A. McKellop, P. McGuire, R. Okuda, and E. Ebramzadeh, “In vivo wear of titanium alloy hip prostheses,” J. Bone Joint Surg., 72A, 512-517, 1990.

[23]  J. O. Galante and W. Rostocker, “Wear in total hip prostheses: An experimental evaluation of candidate materials,” Acta Orthop. Scand., 145, 6-46, 1973.

[24]  S. R. Sousa and M. A. Barbosa, “Effects of hydroxyapatite thickness on metal ion release from Ti6Al4V substrates,” Biomaterials, 17, 397-404, 1996.

[25]  S. R. Shepard and N. P. Suh, “The effect of ion implantation on friction and wear of metals,” J. Lub. Technol., 104, 29-38, 1982.

[26]  H. A. Mckellop and T. V. Rostlund, “The wear behavior of ion-implanted Ti-6Al-4V against UHMW polyethylene,” J. Biomed. Mater. Res., 24, 1413-1425, 1990.

[27]  S. K. Yen and T. Y. Huang, “The characterization of the electrolytic ZrO2 coating on Ti-6Al-4V,” Materials Chemistry and Physics, 6, 214-221, 1998.

[28]  M. A. Khan, R. L. Williams, and D. F. Williams, “Conjoint corrosion and wear in titanium alloys,” Biomaterials, 20, 765-772, 1999.

[29]  W. Cao and L. L. Hench, “Bioactive materials,” Ceramics International, 22, 493-507, 1996.

[30]  陳瑾惠, 陳文正, 朱建平, “快速硬化生物可吸收性鈣磷系骨水泥(CS-153TM)之動物實驗,” 全球華人生醫材料暨藥物制放研討會, p. 151-154, 1999.

[31]  S. J. Ding, C. P. Ju, and J. H. Chern Lin, “Characterization of hydroxyapatite and titanium coatings sputtered on Ti-6Al-4V substrate,” J. Biomed. Mater. Res., 44, 266-279, 1999.

[32]  S. J. Ding, C. P. Ju, and J. H. Chern Lin, “Immersion behavior of RF magnetron-assisted sputtered hydroxyapatite/titanium coatings in simulated body fluid,” J. Biomed. Mater. Res., 47, 551-563, 1999.

[33]  K. de Groot, R. Geesink, C. P. A. T. Klein, and P. Serekian, “Plasma sprayed coatings of hydroxylapatite,” J. Biomed. Mater. Res., 21, 1375-1381, 1987.

[34]  R. G. T. Geesink, “Hydroxyapatite-coated total hip prostheses,” Clin. Orthop., 261, 39-58, 1990.

[35]  H. Yamada, “Strength of biological materials,” Williams and Wilkins, Baltimore, 1970.

[36]  R. M. Pilliar, “Modern metal processing for improved load-bearing surgical implants,” Biomaterials, 12, 95-100, 1991.

[37]  A. K. Mishra, J. A. Davidson, P. A. Poggie, P. Kovacs, and T. J. FitzGerald, “Mechanical and tribological properties and biocompatibility of diffusion hardened Ti-13Nb-13Zr¾a new titanium alloy for surgical implants,” in S. A. Brown and J. E. Lemons eds. Medical applications of titanium and its alloys: the material and tribological issues, ASTM STP, vol. 1272, West Conshohocken, PA: ASTM, p. 96-113, 1996.

[38]  L. D. Zardiackas, D. W. Mitchell, and J. A. Disegi, “Characterization of Ti-15Mo beta titanium alloy for orthopaedic implant application,” in S. A. Brown and J. E. Lemons eds. Medical applications of titanium and its alloys: the material and tribological issues, ASTM STP, vol. 1272, West Conshohocken, PA: ASTM, p. 60-75, 1996.

[39]  W. F. Ho, C. P. Ju, and J. H. Chern Lin, “Structure and properties of cast binary Ti-Mo alloys,” Biomaterials, 20, 2115-2122, 1999.

回上一頁